Your Institute's Publication Profile

Reading time ~2 minutes

Today I wanted to get an idea of my home institute’s publication profile based on the staff list from its own website. I’m sure if you’re in academia you would have the same for your own. My list includes members which belong to various categories: faculty, affiliated faculty, postdoctoral scholar, student and technical staff.

To build the profile, we need to make use of ADS metrics. For example we can search for a paper of interest on ADS labs:

Paper

Then we can click on Analyze in the top right to bring up a new panel of information:

Metric

Using ADS-python, I can access these metrics for an author with the simple line:

import ads
metrics = ads.metrics(author_name)

print metrics[0]

{u'all_reads': {u'Average_number_of_downloads': 73.0,
  u'Average_number_of_reads': 218.8,
  u'Median_number_of_downloads': 53.0,
  u'Median_number_of_reads': 173.5,
  u'Normalized_number_of_downloads': 1.8,
  u'Normalized_number_of_reads': 5.2,
  u'Total_number_of_downloads': 1460,
  u'Total_number_of_reads': 4375},
 u'all_stats': {u'Average_citations': 9.6,
  u'Average_refereed_citations': 5.9,
  u'H-index': 7,
  u'Median_citations': 5.5,
  u'Median_refereed_citations': 2.0,
  u'Normalized_citations': 0.2,
  u'Normalized_paper_count': 0.1,
  u'Normalized_refereed_citations': 0.1,
  u'Number_of_citing_papers': 160,
  u'Number_of_papers': 20,
  u'Refereed_citations': 118,
  u'Total_citations': 192,
  u'e-index': 10.2,
  u'g-index': 13,
  u'i10-index': 5,
  u'i100-index': 0,
  u'm-index': 3.5,
  u'read10_index': 1,
  u'roq_index': 41.0,
  u'self-citations': 12,
  u'tori_index': 0.0},
 u'citation_histogram': {u'2013': [23.0,
   19.0,
   23.0,
   19.0,
   0.0309913153179,
   0.0251989779794,
   0.0309913153179,
   0.0251989779794],
  u'2014': [169.0,
   99.0,
   154.0,
   97.0,
   0.207952689976,
   0.123712598875,
   0.190817259927,
   0.121428547883],
  u'type': u'citation_histogram'},
 u'metrics_series': {u'2013': [2.0,
   4.0,
   1.0,
   0.00125995174574,
   2.0,
   35.0,
   0.0,
   0.0],
  u'2014': [7.0, 13.0, 5.0, 0.00685960767226, 3.5, 41.0, 0.0, 0.0],
  u'type': u'metrics_series'},
 u'paper_histogram': {u'2013': [4.0, 4.0, 0.00504776053564, 0.00504776053564],
  u'2014': [16.0, 11.0, 0.0659490983056, 0.0125452264852],
  u'type': u'publication_histogram'},
 u'reads_histogram': {u'1996': [0.0, 0.0, 0.0, 0.0],
  u'1997': [0.0, 0.0, 0.0, 0.0],
  u'1998': [0.0, 0.0, 0.0, 0.0],
  u'1999': [0.0, 0.0, 0.0, 0.0],
  u'2000': [0.0, 0.0, 0.0, 0.0],
  u'2001': [0.0, 0.0, 0.0, 0.0],
  u'2002': [0.0, 0.0, 0.0, 0.0],
  u'2003': [0.0, 0.0, 0.0, 0.0],
  u'2004': [0.0, 0.0, 0.0, 0.0],
  u'2005': [0.0, 0.0, 0.0, 0.0],
  u'2006': [0.0, 0.0, 0.0, 0.0],
  u'2007': [0.0, 0.0, 0.0, 0.0],
  u'2008': [0.0, 0.0, 0.0, 0.0],
  u'2009': [0.0, 0.0, 0.0, 0.0],
  u'2010': [0.0, 0.0, 0.0, 0.0],
  u'2011': [0.0, 0.0, 0.0, 0.0],
  u'2012': [0.0, 0.0, 0.0, 0.0],
  u'2013': [951.0, 951.0, 1.14041166693, 1.14041166693],
  u'2014': [3424.0, 3037.0, 4.10556990785, 3.50217212234],
  u'type': u'reads_histogram'},
 u'refereed_reads': {u'Average_number_of_downloads': 87.4,
  u'Average_number_of_reads': 265.9,
  u'Median_number_of_downloads': 55.0,
  u'Median_number_of_reads': 179.0,
  u'Normalized_number_of_downloads': 1.5,
  u'Normalized_number_of_reads': 4.6,
  u'Total_number_of_downloads': 1311,
  u'Total_number_of_reads': 3988},
 u'refereed_stats': {u'Average_citations': 11.8,
  u'Average_refereed_citations': 7.7,
  u'H-index': 7,
  u'Median_citations': 7.0,
  u'Median_refereed_citations': 4.0,
  u'Normalized_citations': 0.2,
  u'Normalized_paper_count': 0.0,
  u'Normalized_refereed_citations': 0.1,
  u'Number_of_citing_papers': 150,
  u'Number_of_papers': 15,
  u'Refereed_citations': 116,
  u'Total_citations': 177,
  u'e-index': 10.2,
  u'g-index': 13,
  u'i10-index': 5,
  u'i100-index': 0,
  u'm-index': 3.5,
  u'read10_index': 1,
  u'roq_index': 40.0,
  u'self-citations': 10,
  u'tori_index': 0.0}}

Using this data, we can take a look at the distribution of citations, papers and number of people for each of the respective positions.

MKI Profile

3 conclusions can be made about MKI:

  • There are more students than any other position.
  • Students publish the most number of papers.
  • Postdocs, faculty and students roughly equally share overall citation count.

Though it must be stated that there could be false-positives being found for people who have the same name and this would inflate the number of publications. In any case, I just wanted to demonstrate some basic utility of the data.

End Hiatus

I haven't posted much content over the past year as I've been quite preoccupied with other activities. It's time to change.The number and...… Continue reading

Hubble, Einstein & Sagan Fellow Profiles

Published on April 04, 2016

Mapping Astronomy Publications

Published on March 06, 2016